

ISSN Print: 2664-8350
ISSN Online: 2664-8369
Impact Factor: RJIF 6.02
IJPN 2026; 8(1): 01-05
www.pediatricsjournal.net
Received: 02-10-2025
Accepted: 04-11-2025

Bhawna Verma
Lactation Nursing Officer,
PhD Nursing scholar, MSCN,
BSCN, RNRM, Department of
Paediatrics, Vardhman
Mahavir Medical College and
Safdarjung Hospital, Ansari
Nagar, New Delhi, India

Understanding sensory experiences in children with neurodevelopmental disorders: A multidisciplinary framework for personalized and scalable interventions

Bhawna Verma

DOI: <https://www.doi.org/10.33545/26648350.2026.v8.i1a.176>

Abstract

Children with neurodevelopmental disorders (NDDs) frequently exhibit atypical sensory processing that affects cognition, emotion, behavior, and social participation. This chapter presents a multidisciplinary framework for understanding sensory experiences in children with NDDs by integrating neuroscience, psychology, education, and emerging digital technologies. Emphasis is placed on personalized and scalable intervention models that combine traditional therapeutic approaches with innovations such as wearable sensors, artificial intelligence, and immersive virtual environments. This chapter aims to bridge theory and practice while addressing ethical, accessibility, and policy considerations to support inclusive, evidence-based sensory interventions across diverse clinical and educational settings.

Keywords: Sensory processing, neurodevelopmental disorders, personalized intervention, digital health technologies, neurocognitive development, emotional regulation, inclusive education

Introduction

Neurodevelopmental disorders (NDDs), including autism spectrum disorder, attention-deficit/hyperactivity disorder, learning disabilities, and intellectual disabilities, represent a significant global public health and educational concern ^[1]. These conditions are characterized by early-onset disruptions in cognitive, emotional, behavioral, and adaptive functioning. Among their most pervasive features are atypical sensory processing experiences, which can profoundly influence learning, emotional regulation, social interaction, and daily participation ^[2].

Sensory processing difficulties may manifest as hypersensitivity, hyposensitivity, or sensory-seeking behaviors across multiple sensory modalities. Such differences often contribute to secondary challenges including anxiety, behavioral dysregulation, academic underachievement, and reduced quality of life. Despite their high prevalence, sensory experiences are frequently addressed in isolation or through discipline-specific approaches that limit personalization and scalability ^[3].

Recent advances in neuroscience and digital health technologies provide new opportunities to understand and support sensory processing in children with NDDs ^[4]. This chapter argues for a comprehensive, multidisciplinary framework that integrates traditional practices with emerging technological innovations to promote personalized, scalable, and equitable sensory-based interventions.

The sensory experiences of daily existence are infused with the human experience ^[5, 6]. "The organisation of sensation for use" asserts that a child cannot successfully engage with the outside environment until sensory information is integrated ^[7]. Our lives greatly depend on our sensory experiences. It provides a foundation for proper work behaviour that culminates in a variety of daily activities. Thus, in order to perform a variety of daily tasks, sensory integration is crucial. Perceptual skill acquisition, language development, sensory integration, and emotional expression can all be hampered by learning disorders. Sensory processing problems impact everyday functioning as well as academic achievement in school-age children ^[8].

Corresponding Author:
Bhawna Verma
Lactation Nursing Officer,
PhD Nursing scholar, MSCN,
BSCN, RNRM, Department of
Paediatrics, Vardhman
Mahavir Medical College and
Safdarjung Hospital, Ansari
Nagar, New Delhi, India

Studies related to sensory processing abilities in children with developmental disabilities and typical children on the sensory profile conducted by Ermer and Dunn state that sensory profile factors in children without disabilities are similar to patterns observed in children with various disabilities [9, 10]. It may be that some sensory processing problems are related to intensity or duration of behavior as they begin to interfere with functional performance of daily life. Dunn states that two thirds of the items on the sensory profile were uncommon for typical children and thus may contribute useful information about children with disabilities who respond to these sensory events [11].

Sensory processing is divided into 3 major subtypes by Miller *et al.* (2009) [12]

Sensory modulation disorder: In this group, individuals experience sensation at varying levels of intensity and have difficulty regulating responses. They may be more sensitive to one or more sensations such as noise, touch, or movement. Within this category, we often see children who either seek out extra input or who avoid input many of us would consider innocuous. It can be confusing to dissect behaviors of these children.

Sensory based motor disorder: For these children, disorganized processing causes less than optimal motor output. We may see issues with balance, motor planning, coordination, postural control and/or endurance. These are the kids who appear clumsy, lethargic, or have difficulty keeping up with their peers.

Sensory discrimination disorder: Those in this group have a more difficult time perceiving details of sensory input. It may take them longer than average to determine exactly what they're looking at, hearing or feeling. This could be the child who appears awkward with many fine and gross motor tasks or who often seems unaware of his surroundings.

Background and Theoretical Foundations

Sensory processing refers to the neurological mechanisms by which sensory input is detected, modulated, integrated, and translated into adaptive responses. In children with NDDs, sensory processing differences have been linked to atypical neural connectivity, altered sensory thresholds, and developmental variability in cortical and subcortical networks. Foundational theories such as sensory integration theory and contemporary neurodevelopmental models emphasize the interaction between biological predispositions and environmental experiences. Research increasingly highlights the heterogeneity of sensory profiles within and across diagnostic categories, challenging categorical approaches to assessment and intervention.

The quality of life and emotional state of parents of children with neurodevelopmental disorders are recognised to be lower than those of parents whose children are developing normally and who require assistance to improve. Additionally, these children show disrupted sensory patterns, which may have short- or long-term effects on behavioural, feeding, psychological, and nutritional domains. The sensory experiences of daily existence are infused with the human experience. Sensory processing problems impact everyday functioning as well as academic achievement in school-age children [8]. Children with Autism Spectrum Disorder, ADHD, Intellectual Disability,

Specific Language Disability, Cerebral Palsy, down syndrome was having sensory sensitivity problems. This supports the study done among children diagnosed with ASD, Cerebral Palsy, ID, ADHD & SLD [13-18]. Children with ASD had patterns of both hyper- and hyposensitivity [19-21]. Highest percentages were found for touch (84.9%) among children with ASD followed by the scores for body position (73.1%), movement (68.9%), auditory (67.2%), and oral (57.1%) sensory processing. The lowest percentage was found for the visual processing (32.8%), which fell within the normal range [15].

Vestibular hyposensitivity, olfactory sensory sensitivity in terms of total sensitivity, hypersensitivity & hyposensitivity, tactile & proprioception sensory sensitivity were observed higher among children with Specific Language Disability [22, 23]. Auditory sensory sensitivity problems account for most distressful problems in neurodevelopmental disorders i.e. ADHD, ASD and ID [14]. Sensory oversensitivity may be a common feature of both ASD (31.0%) and ADHD (15.5%) and 9.3% in other groups (Learning Disabilities, Gifted, Developmental Delay) i.e. Registration, Sensitivity, Avoiding [24]. Children for auditory and tactile over responsiveness or both persisted more in the neurodevelopmental population. [25]. Similar studies indicates that sensory profile scores were found in the order of hierarchy that highest was in the auditory, vestibular & tactile followed by the proprioception.²⁶

There is a significant association between total sensory sensitivity and selected factors i.e. type of family, socio-economic status, maternal occupation, nutritional status & diagnosis of child.¹³ Another literature on sensory problems conducted among children with disabilities also identifies association between sensory sensitivity and same selected demographical variables [27-31].

Understanding sensory processing within a broader neurocognitive and emotional context is essential. Sensory differences interact with attention, executive functioning, emotional regulation, and social cognition, reinforcing the need for integrative models that transcend disciplinary boundaries.

Neurocognitive, Emotional, and Behavioral Dimensions

Atypical sensory experiences significantly influence neurocognitive processes such as attention regulation, working memory, and information processing. Sensory overload or under-responsiveness may interfere with task engagement, classroom participation, and adaptive learning [2]. Emotionally, sensory challenges are closely associated with anxiety, irritability, and difficulties in self-regulation. Behaviorally, children may display impulsivity, avoidance, aggression, or withdrawal as adaptive or maladaptive responses to sensory environments [32]. These patterns also affect peer relationships and family dynamics, underscoring the importance of context-sensitive intervention strategies. This section situates sensory processing within a holistic developmental framework, emphasizing the interdependence of sensory, cognitive, emotional, and social domains.

Traditional Approaches to Sensory Intervention

Conventional interventions for sensory processing challenges typically include occupational therapy-based sensory integration, behavioral strategies, environmental modifications, and educational accommodations. These

approaches aim to enhance sensory modulation, adaptive responses, and functional participation^[33]. While evidence supports the effectiveness of certain sensory-based practices, limitations include variability in implementation, reliance on subjective assessments, and challenges in scaling interventions across settings. These constraints highlight the need for complementary strategies that leverage objective data, personalization, and technological support.

Emerging Technologies in Sensory Assessment and Intervention

Technological innovations are reshaping the assessment and intervention landscape for sensory processing in NDDs. Neuroimaging and electrophysiological techniques provide insights into the neural correlates of sensory processing. Wearable sensors and mobile health platforms enable real-time monitoring of physiological and emotional states in naturalistic contexts^[34].

Artificial intelligence and machine learning facilitate data-driven personalization by identifying patterns and predicting intervention responsiveness. Virtual and augmented reality environments offer immersive, controlled settings for sensory exposure, social skills training, and adaptive learning. Gamified digital therapeutics enhance engagement and allow scalable intervention delivery^[35].

This chapter synthesizes these technological advancements and examines their potential to complement traditional sensory-based practices.

Proposed Multidisciplinary Framework

The chapter introduces a multidisciplinary framework for personalized and scalable sensory interventions consisting of four core components:

1. **Integrated Assessment:** Combining standardized tools, clinical observation, neurophysiological measures, and digital monitoring to develop individualized sensory profiles.
2. **Personalized Intervention Planning:** Using data-driven insights to tailor interventions based on sensory needs, cognitive strengths, emotional regulation capacities, and environmental demands.
3. **Technology-Enhanced Delivery:** Leveraging wearable devices, virtual environments, and mobile platforms to support adaptive, real-time intervention.
4. **Ongoing Evaluation and Feedback:** Employing continuous monitoring and stakeholder input to refine strategies and sustain outcomes.

This framework emphasizes collaboration among clinicians, educators, families, and technology developers^[34-36].

Ethical, Accessibility, and Policy Implications

The integration of technology into sensory interventions raises ethical considerations related to data privacy, informed consent, and equitable access. Without inclusive design and policy support, digital innovations risk exacerbating existing disparities^[36].

This section discusses ethical guidelines, accessibility considerations, and policy implications for implementing technology-enabled sensory interventions in healthcare and educational systems, particularly in low-resource and diverse settings.

Conclusion and Future Research Directions

Understanding sensory experiences in children with NDDs is critical for improving developmental outcomes and quality of life. By integrating multidisciplinary knowledge with technological innovation, this chapter offers a comprehensive framework for personalized and scalable interventions. Future research should focus on longitudinal validation, cross-cultural applicability, and participatory design approaches that actively involve children and families.

References

1. Nair KS, George RL, Remya VR, P A R, Saji CV, Mullaseril RR, *et al.* Prevalence estimates of neurodevelopmental disorders in a South Indian population. *Ann Neurosci.* 2025 Jul 11;32:09727531251348188. Available from: <https://journals.sagepub.com/doi/10.1177/09727531251348188>
2. Gigliotti F, Giovannone F, Belli A, Sogos C. Atypical sensory processing in neurodevelopmental disorders: clinical phenotypes in preschool-aged children. *Children (Basel).* 2024;11(7):875. Available from: <https://www.mdpi.com/2227-9067/11/7/875>
3. Gourley L, Wind C, Henninger EM, Chinitz S. Sensory processing difficulties, behavioral problems, and parental stress in a clinical population of young children. *J Child Fam Stud.* 2013;22(7):912-921. Available from: <https://link.springer.com/10.1007/s10826-012-9650-9>
4. Mor M, Micai M, Caruso A, Fulceri F, Fazio M, Scattoni ML. Technologies to support the diagnosis and/or treatment of neurodevelopmental disorders: a systematic review. *Neurosci Biobehav Rev.* 2023;145:105021. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S014976342005103>
5. Prakash AJA, Vaishampayan A. A preliminary study of the sensory processing abilities of children with cerebral palsy and typical children on the sensory profile. *Cerebral Palsy.* 2007;(2).
6. Dunn W. The sensations of everyday life: empirical, theoretical, and pragmatic considerations. *Am J Occup Ther.* 2001;55(6):608-620. Available from: <https://research.aota.org/ajot/article/55/6/608>
7. Watling RL, Deitz J, White O. Comparison of sensory profile scores of young children with and without autism spectrum disorders. *Am J Occup Ther.* 2001;55(4):416-423. Available from: <https://research.aota.org/ajot/article/55/4/416>
8. Padankatti S. A comparison of the performance of children with and without learning disability on the sensory profile tool. *Indian J Occup Ther.* 2005;36(3):63-69.
9. Ermer J, Dunn W. The sensory profile: a discriminant analysis of children with and without disabilities. *Am J Occup Ther.* 1998;52(4):283-290. Available from: <https://research.aota.org/ajot/article/52/4/283>
10. Dunn W, Westman K. The sensory profile: the performance of a national sample of children without disabilities. *Am J Occup Ther.* 1997;51(1):25-34. Available from: <https://research.aota.org/ajot/article/51/1/25>

11. Dunn W. Performance of typical children on the sensory profile: an item analysis. *Am J Occup Ther.* 1994;48(11):967-974. Available from: <https://research.aota.org/ajot/article/48/11/967>
12. Miller LJ. Perspectives on sensory processing disorder: a call for translational research. *Front Integr Neurosci.* 2009;3:22. Available from: <http://journal.frontiersin.org/article/10.3389/neuro.07.022.2009>
13. Verma B, Dey M, Sehgal R. Assessing sensory sensitivity and behavioural feeding problems among children with developmental disabilities: a pilot study. *Indian J Prev Soc Med.* 2024;55(4):303-308.
14. Wada M, Hayashi K, Seino K, Ishii N, Nawa T, Nishimaki K. Qualitative and quantitative analysis of self-reported sensory issues in individuals with neurodevelopmental disorders. *Front Psychiatry.* 2023;14:1077542. Available from: <https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1077542>
15. Alsaedi RH, Carrington S, Watters JJ. Caregivers' assessment of the sensory processing patterns exhibited by children with autism in the Gulf region. *J Autism Dev Disord.* 2023. Available from: <https://link.springer.com/10.1007/s10803-023-05937-4>
16. Shah SP, Joshi A, Kulkarni V. Prevalence of sensory processing dysfunction and patterns on sensory profile of children with autism spectrum disorder in Mumbai: a pilot study. *Indian J Occup Ther.* 2015;47(2):52-57.
17. Kern JK, Trivedi MH, Garver CR, Grannemann BD, Andrews AA, Savla JS, et al. The pattern of sensory processing abnormalities in autism. *Autism.* 2006;10(5):480-494.
18. Thompson K, Wallisch A, Nowell S, Meredith J, Boyd B. Short report: the role of oral hypersensitivity in feeding behaviors of young autistic children. *Autism.* 2023;27(4):1157-1162. Available from: <https://journals.sagepub.com/doi/10.1177/13623613221135091>
19. Pendergast L. Relationship between sensory sensitivities and cognitive and adaptive abilities in children with autism spectrum disorders. 2014.
20. Boyd BA, Baranek GT, Sideris J, Poe MD, Watson LR, Patten E, et al. Sensory features and repetitive behaviors in children with autism and developmental delays. *Autism Res.* 2010;3(2):78-87. Available from: <https://onlinelibrary.wiley.com/doi/10.1002/aur.124>
21. Ben-Sasson A, Hen L, Fluss R, Cermak SA, Engel-Yeger B, Gal E. A meta-analysis of sensory modulation symptoms in individuals with autism spectrum disorders. *J Autism Dev Disord.* 2009;39:1-11.
22. Taal MN, Rietman AB, van der Meulen S, Schipper M, Dejonckere PH. Children with specific language impairment show difficulties in sensory modulation. *Logoped Phoniatr Vocol.* 2013;38(2):70-78. Available from: <http://www.tandfonline.com/doi/full/10.3109/14015439.2012.687760>
23. Iverson JM. Developing language in a developing body: the relationship between motor development and language development. *J Child Lang.* 2010;37(2):229-261.
24. Dean EE, Little L, Tomchek S, Wallisch A, Dunn W. Prevalence models to support participation: sensory patterns as a feature of all children's humanity. *Front Psychol.* 2022;13:875972. Available from: <https://www.frontiersin.org/articles/10.3389/fpsyg.2022.875972>
25. Lazerwitz MC, Rowe MA, Trimarchi KJ, Garcia RD, Chu R, Steele MC, et al. Characterization of sensory over-responsivity in a broad neurodevelopmental concern cohort using the sensory processing three dimensions (SP3D) assessment. *J Autism Dev Disord.* 2022. Available from: <https://link.springer.com/10.1007/s10803-022-05747-0>
26. Salkić N, Pašalić A, Mahmutović J, Krnojelac L. Difficulties of tactile sensory system integration in children with Down syndrome. *AIR.* 2022;27:36. Available from: <https://journalair.com/index.php/AIR/article/view/832>
27. Wong TJ, Yu T. Association between socioeconomic status and prevalence of hypersensitivity diseases and autism: a nationwide study of children. *Matern Child Health J.* 2023;27(12):2194-2202. Available from: <https://link.springer.com/10.1007/s10995-023-03789-z>
28. Fernández-Pires P, Valera-Gran D, Sánchez-Pérez A, Hurtado-Pomares M, Peral-Gómez P, Espinosa-Sempere C, et al. The Infancia y Procesamiento Sensorial (InProS) project: study protocol for a cross-sectional analysis. *Int J Environ Res Public Health.* 2020;17(4):1447. Available from: <https://www.mdpi.com/1660-4601/17/4/1447>
29. Zickgraf HF, Richard E, Zucker NL, Wallace GL. Rigidity and sensory sensitivity: independent contributions to selective eating. *J Clin Child Adolesc Psychol.* 2022;51(5):675-687. Available from: <https://www.tandfonline.com/doi/full/10.1080/15374416.2020.1738236>
30. Smith B, Rogers SL, Blissett J, Ludlow AK. Relationship between sensory sensitivity, food fussiness and food preferences in children with neurodevelopmental disorders. *Appetite.* 2020;150:104643. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S0195666319309869>
31. Lane AE, Young RL, Baker AE, Angley MT. Sensory processing subtypes in autism: association with adaptive behavior. *J Autism Dev Disord.* 2010;40:112-122.
32. Carpenter KLH, Baranek GT, Copeland WE, Compton S, Zucker N, Dawson G, et al. Sensory over-responsivity: an early risk factor for anxiety and behavioral challenges in young children. *J Abnorm Child Psychol.* 2019;47(6):1075-1088. Available from: [http://link.springer.com/10.1007/s10802-018-0502-y](https://link.springer.com/10.1007/s10802-018-0502-y)
33. Camarata S, Miller LJ, Wallace MT. Evaluating sensory integration/sensory processing treatment: issues and analysis. *Front Integr Neurosci.* 2020;14:556660. Available from: <https://www.frontiersin.org/articles/10.3389/fnint.2020.556660>
34. Passarello N, Tarantino V, Chirico A, Menghini D, Costanzo F, Sorrentino P, et al. Sensory processing disorders in children and adolescents: assessment and novel therapeutic tools. *Brain Sci.* 2022;12(11):1478. Available from: <https://www.mdpi.com/2076-3425/12/11/1478>

35. Perry N, Sun C, Munro M, Boulton KA, Guastella AJ. AI technology to support adaptive functioning in neurodevelopmental conditions: a systematic review. *npj Digit Med.* 2024;7(1):370. Available from: <https://www.nature.com/articles/s41746-024-01355-7>
36. Lee H, Jeong YJ, Kim J, Kim S, Jo U, Jun SJ, *et al.* Current status and future directions in the development of digital therapeutic interventions for neurodevelopmental disorders. *Clin Pharmacol Ther.* 2025;117(6):1632-1636. Available from: <https://ascpt.onlinelibrary.wiley.com/doi/10.1002/cpt.3633>

How to Cite This Article

Bhawna V. Understanding sensory experiences in children with neurodevelopmental disorders: A multidisciplinary framework for personalized and scalable interventions. *International Journal of Pediatrics and Neonatology* 2026; 8(1): 01-05.

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.